The Use of Carbon Composite for Commercial ferries - a case of radical Eco-innovation

based on the "Eco Island Ferry" Project and S@il hybrid propulsion project

Henrik Riisgaard Sustainability, Innovation and Policy Aalborg University

My talk on carbon composite ferries

- The context (Denmark, cleantech, shipping)
- Technical issues
- Implementation (policy, business models)
- Innovation aspects
- Conclusions

The Context

http://www.worldatlas.com

Data.un.org

5.6 Million people 43.000 km²

Energy and waste situation in Denmark 2013

District heating covers more than 61% of space and water heating, mainly produced from combined heat and power plants. Waste incineration account for approx 20 % per cent. Most municipal household waste is incinerated.

Environmental challenges are changing (ashore)

The nature of the environmental problem

Is the environment benefiting of CleanTech?

...and yes, the air on Jagtvej in Copenhagen is getting cleaner

Source: "Natur og Miljø 2009" Danish EPA , 2010 Kvælstofdioxid - NO₂ μg/m³ 2 Bly - Pb ng/m³ 2 Svovldioxid - SO₂ μg/m³ 1 Partikler - PM10 μg/m³ 1 Partikler - TSP μg/m³ Benzen μg/m³ Toulen μg/m³

Other CleanTech benefits for Denmark?

...and 120.000 employees in 720 companies

Source: "Natur og Miljø 2009" Danish EPA, 2010

Industry's preventive approaches to environmental challenges

Dilution

Denial: no problem!

A new wave is approaching: environmental regulation at sea

What does it consist of?

Legislation:
MARPOL convention fra IMO
new Annex VI (2008-11)

- •EU's sulphur directive
- Californian legislation

Demand driven: •Carbon footprint? •Other aspects?

SOx and NOx Emissions are regulated by the International Maritime Organisation (IMO)

Environmental improvement options in shipping

Optimal operation (weather routes, lean, reduced speed, maintenance) Technical changes

- New design (propulsion, hull, bulb, lightweight, surfaces, fins)
- Add-on (micro bubles, Scrubbers, catalysts, EGR, Ballast water treatment

Cleaner fuels

- Low sulphur fuels (diesel)
- Gas (LNG)
- Biofuels...?
- Electric and hybrid systems

On-shore power supply

CO₂ emission for ships and trucks

Hans Otto Holmegaard Kristensen 29-11-2010

Conclusions from DMU (2010)

In 2007, the average contribution of shipping to air pollution in Denmark was:

- SO₂ 33%
- NO₂ 21 %
- mPM2.5 18 %
- PM2.5 9%

- CO2 globally: 2,7 % (IMO, 2009)

Scenario calculations show significant reductions when IMO's sulphur criteria are implemented in 2020. For NO₂ and PM2.5 the calculated effect is smaller.

NOx reductions: not very shipping related

Figur 6 Beregnede koncentrationer af NO_2 i μ g/m³. Til venstre er vist situationen i 2007, til højre situationen i 2020. Der sker NÆSTEN INGEN ÆNDRING (ed.:HR) i udslippet af NO_x fra skibstrafik mellem de to tidspunkter, mens der er markante reduktioner for landbaserede kilder.

10.00 9.00 - 10.00 9,00 - 00 -7.00 -8.00 6.00 - 7.005.00 -6.00 5.00 4.00 -3.00 -4.00 3.00 2.00 -2.00

Model calculation for 2007 and 2020

Concentration of SO_2 , $\mu g/m^3$

Sulphur contents in different fuels

Christer Ågren, 28-11-2010

Aim of the Eco Island Ferry project

The idea is:

To work out a basis for **comparing** two small passenger ferries built of either carbon composites or steel.

- □ life cycle costs
- □ environmental impact

To inspire shipowners and naval architects to consider modern materials for ship building when fuel consumption and environmental impact have high priority

Support from The Danish Maritime Fund and Västra Götaland Region

Timeline for the Eco Island Ferry Project

May 2011 Application from 8 partners (DK+SE)

Dec. 2010

1st MARKIS

Conference: Th Danish compar

meet Swedish

Experts

June 2010: Three

companies share a

small composite

common interest for

small Danish

ferries

2011: Funding from:

iötaland Region Maritime Fund participants n. Res. Inst. of Sweden

arts

What if similar advanced techniques were applied to ensure environmental improvements in mainstream segments? As if environmental impacts matter

(Lead user innovation made possible by the navy and luxury superyachts)

Not a commercial project

- No ferry actually constructed (the reference ferry was in operation)
- All materials and analyses are publicly available
- Maximum dissimination of results and publicity

The real anticipated outcome:

- Change of perspective among shipowners and authorities
- Competence building in industry
- Capacity building in Danish and Swedish maritime authorities
- The basis for a follow-up commercial project (= real ferries)

Market Research

What does the market look like in different nearby countries?

- Number of vessels?
- Age?
- Size?
- Business models/costs?
- Ferry landing?
- Operational hours per day?

The Markets: Denmark

Velkommen til Småøernes Færgeselskaber

•70 ferries (incl back-up)
•10 recent newbuilds
• Still, 30 are more than 25 years old (average age: 44)
•Business model?

Tunø Ferry – existing and new

The Challenger...

Reference ship: Tunø-ferry

- EC directive, D-class
- Construction material: Steel
- 200 Passengers & 6 Cars
- approx. 30 meters
- 9,5 knots
- Displacement 340 T
- Installed engine power: 2 X 294 kW

Replacement for the Tunø-ferry

- EC directive? D-class, SOLAS
- Construction material: FRP (Carbon comp.)
- 200 Passengers & 6 Cars
- approx. 30 meters
- 9,5 knots
- Displacement 120 T
- Expected engine power: 2 x 110 kW

Structure weight

Overall structure weight	[%]		[%]
Steel	100		
Aluminium	67	-	56
E-Glass/foam sandwich	52	-	43
Carbon/foam sandwich	37	-	31

Slide by Niels Hjørnet

What is composite? A mixture of resin and fibres

Slide by Niels Hjørnet

Comparison Steel - carbon

Material properties	E- modulus	Tensile/yield strength	Density	Specific strength
	[GPa]	[MPa]	[kg/m ³]	[kNm/kg]
Steel	210	355	7850	45
Carbon T300/Epoxy	57	540	1418	381

Slide by Niels Hjørnet

Comparison Steel – carbon/foam sandwich

Results: Environment

20

Ferry operation (fuel) is the reason

Lower draft (1.4 m) saves 3,2 nautical miles a day and 5 min on each trip

Results Payback: Break-even after 8.6 years use

Assumptions:

- 3 % increase on fuel price (also shown for 0%, 5% and 10%)
- 4 hours daily operation = 2 return trips
- Salaries not included! (considered equal)
- 4 % interest rate
- 2.1% inflation rate

Figure 6 Contribution from different phases in the life cycle cost, presented at current price

Life Cycle Costs and break-even

Highly sensitive to operational hours:

Trips per day	Operation Break-even
1 (2 hours daily use)	12.1 yrs
2 (4 hours daily use as today)	8.6 yrs
3 (6 hours daily use)	6.5 yrs
4 (8 hours daily use)	5.3 yrs

Results: Identified institutional barriers

- 1. Considering Life Cycle Costs in public tendering
- 2. New green business models to finance extra investment
- 3. Allowing ferries in carbon composites in a more simple way
 - 1. Eu Ferry directive requirement: "Steel or similar"
 - 2. National approval for specific route- cheap but export difficulties
 - 3. SOLAS requirement "risk analysis based approval" (rule 17). For unrestricted use (expensive)
 - 4. High speed Code extra manning (expensive)

Four planned outputs from Øko-Ø:

- 1. A general arrangement, scantling, propulsion calculation, specification for a carbon composite ferry.
- 2. Life Cycle Cost analysis. Assessing total cost of ownership and pay-back time for extra initial costs (design and construction)
- **3.** Life Cycle Assessment mapping environmental inputs and outputs throughout the whole life time of the ferry and an assessment of the environmental impacts of these.

4. "Rule 17 analysis". Which alternative constructions and arrangements are necessary to get approval for a small displacement lightweight composite ferry?

Øko-Ø

= No real ferry, only paper

Triple helix innovation

Authorities

Søfartsstyrelsen

Västra Götaland Region

Sv. Transportstyrelsen

Erhvervshus Nord

Research

Aalborg University Danish Yachts Niels Hjørnet Yacht Design

Coriolis AB

2.-0 LCA consultants

Private industry

Kockums AB

Three enthusiastic innovators and how they learned

Jens Otto Sørensen, Danish Yacths sailed submarines learned modular design for navy

Mats Hjortberg, Coriolis AB Composites and tender problems

Niels Hjørnet, "homebaker" of racing boats: "Leave ashore what you won't need"

How can Odder Municipality save 263.345 kg CO₂ on transportation each year?

Alternative 1:

Alternative 2:

Shift all cars to hybrid: Exchange public cars Fiat Panda Dual 1.2 dynamic (127 g CO₂/km) with Yaris hybrids (78 g CO₂/km)

The future: More than just paper

- -Interest
- -Presentations
- -Teaching
- -Press
- -Serious meetings-EU ferry directive revision-Izmir Municipality:

Let's have 15 of those (starting 2014)

Özata.com

Waves can be used positively

...but you must know where and when they are coming

Are new wave-causing impacts approaching?

"Observatory" Research, Industry and authorities MARKIS (DK, N, S) Network, facilitating triple helix

How can the wave creation be influenced?

- Knowledge
- Interests
- Power
- Technology and solutions
- Network

Key points

Anticipate upcoming env regulation! - and influence it

Shipping is different: Global competition Instruments and enforcement Marked-based efforts?

Solutions exist

Institutional Implemetation barriers

Danish solutions to global environmental challenges

The government's action plan for promoting eco-efficient technology

Focusing on the global market
Focusing on trends and new opportunities
Focusing on enterprises and entrepreneurs

July 2007

The Danish Government

References and Contact:

Mosgaard, M., Riisgaard, H., & Kerndrup, S. (2014). Light Island Ferries in Scandinavia: A Case of Radical Eco-innovation. In *Eco-Innovation and the Development of Business Models* (pp. 275-295). Springer International Publishing.

Mosgaard, M., Riisgaard, H., & Kerndrup, S. (2014). Making carbon-fibre composite ferries a competitive alternative-the institutional challenges. *International Journal of Innovation and Sustainable Development*.

Smith, J.H. and Watson J (2013) Eco Island Ferry - Comparative LCA of island ferry with carbon fibre composite and steel based structures. 2.-0 Lca Consultants Aalborg

More info on www: Eco-island.dk

Henrik Riisgaard, Aalborg University: henrik@plan.aau.dk

Your questions