SPECIAL SESSION: Energy and Water Efficiency and Green Energy for Sustainable Future: Knowledge Development and Transfer
Industrial production still requires a considerable and continuous supply of energy delivered from natural resources—principally in the form of fossil fuels such as coal, oil, and natural gas. The increase in our planet human population and its growing nutritional demands have resulted in annual increases in energy consumption. Furthermore, many nations have accelerated their development in the last 10 years, and countries with large populations (such as China and India) have seen even more significant increases in energy demands. This growing energy consumption has also resulted in unsteady climatic and environmental conditions in many areas because of increased emissions of CO2, NOx, SOx, dust, black carbon, and combustion process waste.
It has become increasingly important to ensure that the production and processing industries take advantage of recent developments in energy efficiency and in the use of nontraditional energy sources. The additional environmental cost is related to the amount of emitted carbon dioxide (CO2) and may take the form of a centrally imposed tax. A workable solution to this problem would be to reduce emissions and effluents by optimizing energy consumption, increasing the efficiency of materials processing, and increasing also the efficiency of energy conversion and consumption.
Although major industry requires large supplies of energy to meet production targets, it is not the only sector of the world economy that is increasing its energy demands. The particular characteristics of these other sectors make optimizing for energy efficiency and cost reduction more difficult than in traditional processing industries, such as oil refining, where continuous mass production concentrated in a few locations offers an obvious potential for large energy savings. In contrast, for example, agricultural production and food processing are distributed over large areas, and these activities are not continuous but rather structured in seasonal campaigns. Energy demands in this sector are related to specific and limited time periods, so the design of efficient energy systems to meet this demand is more problematic than in traditional, steady-state industries.
In recent years there has been increased interest in the development of renewable, noncarbon-based energy sources in order to combat the increasing threat of CO2 emissions and subsequent climatic change. These sources are characterized by spatial distribution and variations as well as temporal variations with diverse dynamics. More recently, the fluctuations and often large increases in the prices of oil and gas have further increased interest in employing alternative, non-carbon-based energy sources. These cost and environmental concerns have led to increases in the industrial sector efficiency of energy use, although the use of renewable energy sources in major industry has been sporadic at best. In contrast, domestic energy supply has moved more positively toward the integration of renewable energy sources; this movement includes solar heating, heat pumps, and wind turbines. However, there have been only limited and ad hoc attempts to design a combined energy system that includes both industrial and residential buildings, and few systematic design techniques have been marshaled toward the end of producing a symbiotic system.
Another important resource is water – both as raw material and effluent. Water is widely used in various industries as raw material. It is also frequently used in the heating and cooling utility systems (e.g., steam production, cooling water) and as a mass separating agent for various mass transfer operations (e.g., washing, extraction). Strict requirements for product quality and associated safety issues in manufacturing contribute to large amounts of high-quality water being consumed by the industry. In addition, large amounts of aqueous streams are released from the industrial processes, often proportional to the fresh water intake. Stringent environmental regulations coupled with a growing human population that seeks improved quality of life have led to increased demand for quality water. These developments have increased the need for improved water management and wastewater minimization. Adopting techniques to minimize water usage can effectively reduce both the demand for freshwater and the amount of effluents generated by the industry. In addition to this environmental benefit, efficient water management reduces the costs for acquiring freshwater and treating effluents.
Another key issue is the knowledge development and management. The currently dominating societal system, or pattern, of knowledge management is to document the research and demonstration outcomes in scientific articles and books. While the scientific articles can be viewed as “work in progress” or the current cutting edge of the knowledge development in the relevant areas, books are intended as a kind of summaries useful for learning and everyday reference.
As such, the books can be viewed as limited knowledge bases, containing summaries and interpretations of the research works by the book authors, as well as relevant references to other pieces of knowledge – books, scientific articles, patents, etc. When the content of a book gets outdated compared to new developments, frequently new editions of the same book are devised or new books are written in their stead.
However, as the number of research projects and scientific articles grows, there is an increasing chance that repetitions of certain research topics or re-discoveries of same principles and research results occur. While such a phenomenon is generally beneficial within small extent, its increasing rate would result in significant waste or misuse of resources dedicated to knowledge development and hinder knowledge exploitation.
This is where comes the need for employing sophisticated systems for knowledge management, which should enable key features for efficient knowledge development, update, tracking and transfer (including education). Some such features include: integrated research-training-update life cycle, increased interactivity and variety of the content delivery, Internet-based training and knowledge transfer, Emphasis should be put on Internet-based interactive working sessions (learning objects) in addition to written exercises. These will allow involving additional associations and senses in the training process further improving the quality and speed of e-learning.
This session provides a platform for development of modern technologies for energy and water efficiency and for exchanging ideas in the field, supplemented by key contributions geared towards more efficient knowledge management. They include, beside the others, the Process Integration and optimisation methodologies and their application to improving the energy and water efficiency of mainly industrial but also nonindustrial users. An additional aim is to evaluate how these methodologies can be adapted to include the integration of waste and renewable energy sources for energy conversion and water supply/purification. The session is outlining the field of energy and water efficiency, including its scope, actors, and main features. The deals with energy and water saving techniques. An increasingly prominent issue is assessing and minimizing emissions and the the environmental footprints: carbon and water footprints. The carbon footprint (CFP) is defined by the U.K. Parliamentary Office for Science and Technology as the total amount of CO2 and the other greenhouse gases emitted over the full life cycle of a process or product. IN a similar way the water footprint embodies the various water quantities used for the manufacturing and delivery of a product. For energy supply, there have been numerous studies that emphasize the “carbon neutrality” of renewable sources of energy. However, even renewable energy sources make some contribution to the overall carbon footprint, and assessment studies frequently do not account for this. The carbon footprint should also be incorporated into any product life-cycle assessment (LCA).
Dr. Petar Varbanov
Brno University of Technology
Brno, Czech Republic
Dr Varbanov worked for the Institute of Chemical Engineering, Bulgarian Academy of Sciences, where he still acts as a Consultant. After a spell in the industry in Bulgaria he got a scholarship at a prestigious British University – UMIST, Manchester. He got PhD in Process Integration from UMIST with distinction and won another prestigious EC Marie Curie grant for 2-year research at Technische Universität Berlin, followed by another EC grant for coming to the University of Pannonia - Hungary, where he is a Deputy Head of the Centre for Process Integration and Intensification CPI2.
His experience covers energy saving, water and waste water minimization, optimization of energy supply networks, Systems Modelling, Process Synthesis and Process Operation. His research has been successfully implemented in collaboration with industrial partners: BP-Coryton, BP-Grangemouth, MOL Százhalombatta. Presently he has been contributing to 7 EC co-funded research projects. He has published more than 50 papers in peer-reviewed journals. He is a co-author of two books and several chapters in books. Dr Varbanov acts as a scientific secretary of the PRES series of conferences and editor of the related Special Issues in respected journals such as Applied Thermal Engineering, Journal of Cleaner Production, Cleaner Technologies and Environmental Policy, Theoretical Foundations of Chemical Engineering. Dr Varbanov is Subject Editor for ENERGY, for the topic of Energy Planning Tools.
Prof. Jiří Jaromír Klemeš
Brno University of Technology - VUT Brno
Brno, Czech Republic
Co-Editor-in-Chief of Journal of Cleaner Production. The founder and President for 24 y of PRES (Process Integration for Energy Saving and Pollution Reduction) conferences. Chairperson of CAPE Working Party of EFCE, a member of WP on Process Intensification and of the EFCE Sustainability platform. He authored and co-authored more than 700 papers, h-index reaching 65. A number of books published by Elsevier, Woodhead, McGraw-Hill; Ashgate Publishing Cambridge; Springer; WILEY-VCH; Taylor & Francis).
Several times Distinguished Visiting Professor at Universiti Teknologi Malaysia and University Technology Petronas, Malaysia; Xi’an Jiaotong University; South China University of Technology, Guangzhou and Tianjin University in China; University of Maribor, Slovenia; Brno University of Technology and the Russian Mendeleev University of Chemical Technology, Moscow. Doctor Honoris Causa of Kharkiv National University “Kharkiv Polytechnic Institute” in Ukraine, the University of Maribor in Slovenia, University POLITEHNICA Bucharest, Romania. “Honorary Doctor of Engineering Universiti Teknologi Malaysia”. Awarded with “Honorary Membership of Czech Society of Chemical Engineering", "European Federation of Chemical Engineering (EFCE) Life-Time Achievements Award" and "Pro Universitaire Pannonica" Gold Medal.